
A system of interactive scores based on Petri
nets

A. Allombert∗, G. Assayag†, M. Desainte-Catherine‡
∗Bordeaux 1 University and Ircam

†Ircam
‡Bordeaux 1 University

Abstract— We propose a formalism for composition and
performance of musical pieces involving temporal structures
and discrete interactive events. We use the Allen relations to
constrain these structures and to partially define a temporal
order on them. During the score composition stage, we use
a constraints propagation model to maintain the temporal
relations between the structures. For the performance stage,
we must allow the composer to trigger the interactive events
“whenever” he wants and we have to also maintain the
temporal relations in a real-time context. We use a model
based on Petri nets for this stage. We also provide a solution
to define global constraints in addition of the local temporal
constraints inspired by the NTCC formalism.

I. INTRODUCTION

Composing an interactive musical piece often neces-
sitates to construct several musical parts before binding
them to interactive events or computing programs. But, on
the one hand, existing systems for writing music actually
propose very limited real-time interaction, and on the
other hand programming languages, such as MAX (or
pd) do not provide the composer with very sophisticated
tools for composition.

We claim that a new kind of systems is needed
for composing interactive musical pieces. Such systems
would provide a composition environment for building
musical parts as well as programming tools for specifying
interaction computation.

In this paper, we propose a formalism for writing
musical pieces involving discrete interactive events. As in
we shall call interactive score, a musical score involving
static and interactive events, that are bound by some
logical properties. In this paper, we limit our study to tem-
poral relations, such as the Allen ones. Our model com-
prises a compositional phase and a performance phase.
For the first one we propose an incremental constraints
propagation model based on the GECODE constraints
library, and for the second one a model based on Petri
nets. Then we present how we allow the composer to
define global constraints and how we maintain them dur-
ing the performance through a constraints store inspired
by the NTCC (Non-deterministic Temporal Concurrent
Constraint Calculus) formalism. We have implemented
parts of this model in OpenMusic, a graphic language
for computer assisted composition developed at Ircam.

Our preliminary tests show this model to be appropriate
both for score editing and for our real-time requirements,
but more experiments are needed for this to be conclusive.

II. INTERACTIVE SCORES

We widely presented the model of interactive scores
we use in [1]. Thus we just present here the important
notions we use in this article.

A. Interactive Score

A score is defined by a tuple s = 〈t, r〉 where t is a set
of temporal objects and r is a set of temporal relations.
A temporal relation is defined by r = 〈a, t1, t2〉 where a
belongs to A, the set of Allen relations [2], and t1 and t2
are temporal objects.

A temporal object is defined by t = 〈s, d, p, c〉 where s
is the start time d is the duration, p is an attached process,
c is a constraint attached to t (i.e. its local store).

When creating new temporal objects, there is the fa-
cility to choose it among four classes that differ in the
role they play in the score and the constraints in their
store. The four classes are : event, texture, interval, and
control-point.
• An event has the constraint d = 0. Events model

discrete interactive actions. Their attached process
is specialized in “listening” to the environment and
waiting a triggering signal to happen.

• A texture has the constraints d ∈ [d1, d2], 0 < d1 ≤

d2 , which gives its duration an authorized range of
variation. If we force d1 and d2 to be equal to the
texture initial duration, then it is considered rigid.
Otherwise it is considered supple. A texture has a
generative process.

• An interval is exactly like a texture except it has
no generative process. Intervals are used as blank
placeholders in the score. They help to refine Allen
relations with respect to authorized time intervals.

• A control-point p is always created in relation with
a texture/interval q. A relation p during q is auto-
matically added to the score. Control points help to
express a time relation between any TO (Temporal
Object) and a particular point inside a texture or an
interval.

The class information is kept at the structural representa-
tion level, just as the hierarchical information: as for the
temporal level, objects are handled in a unified fashion.

Temporal relations: The composer can bind the tem-
poral objects with temporal relations based on the Allen
relations. These relations have been introduced by J. Allen

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

158



who worked on natural languages in the 80’s to formalize
the relative positions of temporal intervals [2]. Figure 1
presents these relations.

A

A

A

A

A A meets B

A starts B

A finishes B

A

A

A equalsB

B

A during

A before B

B

A overlaps B

Fig. 1. The Allen relations

The composer can define the relations before, meets,
overlaps, starts, finishes, during between temporal objects
; as said before, to maintain the temporal hierarchy of the
score, a during relation is automatically added between a
TO and its children. Allen relations are only qualitative,
while all initial temporal positions and durations are
quantitatively specified in the score. Thus, we keep this
information and use it for expressing quantitative temporal
properties that may in certain case put restrictions on the
Allen relations. For example, a TO defined as rigid will be
obliged to keep the duration it is given when created. The
temporal relations are used to keep the organization of the
score whenever the composer changes the characteristics
of a TO (duration, start time ) at score edition time. The
new values are propagated through the score and the TOs
are moved or stretched as necessary in order to respect
the constraints.

Interactive events: We call an interactive event a par-
ticular event that is not to be played by the score player.
Rather, it models a discrete, asynchronous event that is
supposed to happen at performance time in the external
environment and to enter the system through an input
channel. Such an event could be related to the triggering
of a pedal, or the detection of an instrumentalist who
begins to play, the recognition of a certain pitch played
by a musician etc. The composer can define temporal re-
lations between events and any other TO including events.
The meets relation will generally be used to synchronize
TOs with the arrival of an interactive event and therefore
to explicitly represent the way an external control will
be able drive the execution of the score at performance
time. The process associated to an event will run from
the origin of time in the score until the event happens
actually. When it does happen, a special constraint will be
added to the store, informing the execution machine that
it is time to check all the constraints relating this event
to other TOs. This will in turn condition the execution

of the TOs (start a TO, stop a TO, etc.) that depend
on the event. It must be well understood that interactive
events may well happen at a certain distance from the date
they are assigned to in the score, because of expressive
choices or even mistakes. Thus the event date in the
score is only the ideal date from the composer point of
view, and the Allen relations will be used to maintain the
score coherence whatever the anticipation or the delay is.
Of course this must stay within reasonable limits : an
exaggerated anticipation or delay should be interpreted
as a mistake or a time out. Such limits can be expressed
by setting a before relation between an interactive event
and other TOs, in order to forbid the event to happen
outside of a certain region of the score. One can also
use the intervals we have introduced sooner. By defining
an interval supple or rigid, by giving it a duration range,
one can control the authorized region for an event (see
example further). In case of anticipation error or time
out, decisions have to be made, the simple of which is to
just ignore the event. This can lead to difficulties : due
to the web of dependencies between TOs, it could result
in preventing the whole remaining score to be executed.
Addressing this problem is beyond the scope of the paper.
So, the general philosophy behind this all, at performance
time, is “keep as much as possible the coherence of the
time structure planned in the score, while taking into
account, and accepting up to a certain limit, the expressive
freedom of the external agents.”

An interactive score is shown in figure 2.

T6

1

Δ2

s2

T2 Δ6

Δ0

Δ3

meets

meets

overlapss1

T1

T4

T5

Δ7

T3
,Δ maxmin Δ ][

T0

T7

Δ

Fig. 2. An example of an interactive score

In this example, we have 8 temporal objects T 0 to
T 7. Objects T 0 to T 6 are embedded into T 7, which
means they all have an implicit during relation to T 7. By

T0, T3, T6 are intervals (drawn as arrows)
T1, T2 are textures (drawn as rectangles)
T5 is an interactive event (drawn as circle)
T4 is a control-point associated to T1

(drawn as black circle)
T0, T1 and T6 are rigid (shown by a bold line)
T3 is supple and has a duration range of [Δmin, Δmax]

T2 is supple.

convention we will call si and Δi the variables defining

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

159



the start time and duration of temporal object T i.
The Allen relations are :

T 0 starts T 7

T 0 meets T1

T 4 meets T2

T 1 overlaps T2

T 5 meets T2

T 3 starts T 1

T 3 meets T5

T 2 meets T6

T 6 finishes T7

The relations involving an interval (e.g. T 0 meets T1)
have not been drawn as the arrow symbol is quite explicit.
The interpretation of this score is as follow :

T 7 is a complex texture that controls the occurrence of
a certain number of substructures. From the beginning of
execution of T 7, wait for a duration equal to Δ0. Then
begin playing T 1. From that point, after duration Δmin

has elapsed, we begin to expect an external event (T 5)
that should happen before duration Δmax has elapsed.
As soon as T 5 has been detected, start playing T 2. When
duration Δ0 +Δ1 has elapsed since the beginning of T 7,
stop T 1. Now the end of T 2 will depend on the status
of T 7. If T 7 is rigid, it has a certain duration defined by
the composer and the end of T 2 will occur after duration
Δ7 − Δ6 has elapsed since the beginning. If T 7 is not
constrained, then T 2 will last an undetermined time after
T 1 has finished. Object T 7 will end Δ6 units of time
after T 2 has finished.

At last, the graphical level provides a set of surface
representations and graphical edition tools that may in-
clude conventional music notation (where it may apply) or
hierarchical boxing representations such as in OpenMusic
Maquettes [5] or Boxes [3]. For a given structural and
temporal representation, several graphical representations
may interchange, that reveal more or less of the structural
/ temporal details.

B. The propagation model

During the compositional phase, we face constraints
problem when the composer changes the values of the
dates of a TO and we have to propagate it through
the score to maintain consistency in the relations. A
score can be translated into a constraint problem where
the variables are the starting dates and durations of the
TOs, and the constraints are equations deduced from
the temporal relations. This leads to a linear constraints
problem with a cyclic constraint graph. Since a lot of
constraint-propagation algorithms do not admit cyclic
constraints graphs, we use GECODE [10], a a very effi-
cient multi-engines constraints-satisfaction library written
by Christian Schulte. Conceptually, GECODE divides
the constraints graph into several parts with structural
particularities before treating each part with a specific
domain filtering algorithm. GECODE also propagates
intervals of values instead of single values, which makes
it admit cyclic constraints graphs.

III. THE REAL-TIME MODEL

To maintain the temporal constraints in a real-time
context, we cannot use a propagation model because we
cannot control the computing time and then we can’t be
sure that during the performance, the system will have
computed the date of an event before this date occurs.
As we explain in [1], we have explored two models, one
based on NTCC and an other based on Petri nets. We
have developed this last solution.

A. Petri Networks
Petri nets is a general-purpose tool for handling con-

currency. It has been used in the computer music field
by several authors such as Goffredo Haus [6] who used
them for formal representation and structural descriptions
of music. In these studies music objects are associated
to transformation processes that are described by Petri
networks. These studies are based on an analysis of
musical pieces and of the compositional process that
lead to them. Another study on Petri nets for computing
music was carried by Travis Pope [9] for his system
“DoubleTalk” used for automatic music generation.

Our interest in the Petri nets is different, we use
them to manage parallelism between our textures seen
as autonomic process that must synchronize which is the
case with an interactive score. During the composition of
a score, we have seen that the composer defines a partial
order between the TOs with the Allen relations. During
the performance the events will admit a total order, but
because of the interaction points, several total orders can
occur. Trying to specify all this eventual orders through
a finite automata would lead us to very high number of
states. Petri nets allow us to specify a partial order and to
handle concurrency. We have presented a first approach
of the use of Petri nets to design a system of interactive
scores in [4].

B. Formal semantics
A general presentation of Petri nets can be found in [7].

Formally, a Petri Net is a bi-partite directed graph. The
two types of vertice are named “places” and “transitions”.
A last each place contains a number of tokens greater or
equal to zero.

Definition 1: A Petri net is tuple PN = (P, T, V, d),
where
• P is the set of places
• T is the set of transitions
• V = (P × T ) ∪ (T × P ) is the set of arcs
• d : P → N is the distribution of the tokens among

the places
Every transition contains a condition which have to

be satisfied for tokens to cross it. Moreover, all places
admitting an arc towards a transition t have to contain
at least a token for the transition t to be passed. When a
transition t is passed, one token is removed from all places
preceding t and one token is added to all places admitting
an arc coming from the transition t. Then, execution of a
Petri network is a sequence of tokens moves.

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

160



C. Places

In our model we store the events of the score in the
places of the net. So each place contains one or more
events which are launched when a token is created in
this place. The case of a place with more than one events
represents the case of several events that must be launched
at the same time. Once a token is created in a place, we
launch every events it contains.

D. Transitions

In our use of Petri nets, the conditions on the transitions
are of two types :
• time-conditions which mean that after every place

with an arc toward the transition contains a token,
the system must wait at least a certain time before
crossing the transition.

• control-conditions which mean that the system must
wait the trigger of a discrete control by the musician
before crossing the transition.

This formalism allows us to manage concurrency since
some parts of a Petri net can execute independently from
each other while we can synchronize such parts with the
transitions. This is typically what we need to express the
partial order of interactive scores. In our case, the source
of the net is the beginning of the musical piece. When the
performance starts the distribution of tokens is such that
there is only one token over the net which is contained in
the place of the event SP with P the musical piece. Then,
the transitions provide a way to wait for time intervals that
must be respected or input control from the musician. So
the performer can express through the interaction points
while the temporal relations are maintained.

So we have to convey the information of an interactive
score into a Petri net. We present an algorithm which
solves part of this problem in the next section.

IV. THE TRANSFORMATION ALGORITHM

A. The elementary transformations

For the moment, our algorithm doesn’t hold the supple
intervals, so all intervals of the score are supposed to be
rigid. The main idea of this algorithm is to reduce the
Allen temporal relations between the TOs to elementary
temporal constraints between the events of this TOs and
then translate this elementary constraints in elementary
configurations of Petri nets. The figures 3 and 4 give the
list of this elementary transformations.

For example, if the composer defines a relation
TO2 during TO2 such as in the figure 3, this implies
some temporal constraints between the dates of the events
STO1 , ETO1 , STO2 and ETO2 which are

STO2 = STO1 + Δ2

ETO1 = ETO2 + Δ3

In these constraints are translated into a configuration of
transitions and arcs between the place associated to the
events of T1 and T2, as shown on the figure.

Δ2 Δ3

ΔΤ ΔΤ

T1

Δ1
2T

2 3

T3

(a) Before
Δ Δ Δ Δ Δ

S S E S E ET2 T2 T3 T T1

32

3

1 32 TT

T1

(b) Before Associated Petri Net

Δ4Δ1

T2

ΔΤ 3

Δ2 Δ3T3

T1

(c) During
Δ Δ Δ Δ Δ

S ET1
ST 2

ST 3
ET3

ET2 T1

T31 2 3 4

(d) During Associated Petri Net

Δ 2 Δ 3

T2

Δ 4

T3

T1

Δ 1

Δ 5

(e) Overlaps
Δ Δ Δ Δ Δ

S
2 3

S S E E
1

ET 1 T 2 T 3 T T T

1 2 3 4 5

(f) Overlaps Associated Petri Net

Fig. 3. The set of elementary transformations without merge of place

We also have to consider two types of implicit con-
straints :
• the hierarchy of the piece that allows some TOs

to contain other TOs implies that for every TO n
contained in a complex texture ct, there is an implicit
relation n during ct.

• the integrity of each texture n implies a constraint
En = Sn + Δn where Δn is the duration of n.

We split the Allen relations in two parts : those which
don’t need merging places during their transformation
and those which need it. Of course those which need
this operation are the relations which imply a constraint
of equality on the dates of two events. We treat these
ones separately from the others because the merge of two
places can create duplications of arcs and each time we

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

161



T2
Δ 1

Δ Τ 2

Δ Τ 3

T3

T1

Δ 2

(a) Meets

S
Δ Δ

,E SS E
Δ

E
T1

1

T2

T2

2 T3

TΔ 3

3 T1

2

T T

(b) Meets Associated Petri Net

T2

T3

Δ Τ 3

Δ 1 Δ 2

T1

ΔΤ 2

Δ 3

(c) Starts

ST1

Δ Δ

,

Δ

E

ΔΔ E

S S
E

T2 T3

T 3

2

3

T1

1
T2 T2

T3

(d) Starts Associated Petri Net

Δ1

T2

Δ Τ 2

Δ 2 T3

ΔΤ3

Δ

T1

3

(e) Finishes

Δ1

S

Δ

ΔΔ

,

T

T

1

2 3 3

22

ET2 T3 T1T

TS

TS

E E
Δ3

(f) Finishes Associated Petri Net

Fig. 4. The set of elementary transformations with merge of place

merge a place we have to run some verification methods
to prevent duplications.

At last for representing interactive events, we must
bound the trigger of these events with the incoming
of the control message from the musician. Thus after
having created the Petri net of the score representing every
static information, for each interactive events, we turn the
condition of every transitions which admit an arc toward
the place representing the interactive event into waiting
for the control message associated with the event.

B. The algorithm
Now we can present the algorithm. This version is

designed for a piece with no complex texture but it can
be generalize for every interactive scores.

P = (TEXT, IE, R) where
• TEXT is the set of textures of P
• IE, the set of interactive events
• R, the set of Allen relations between the TO’s, that

we split in two sets : Rno−merge, Rmerge

In addition, for a texture n of a piece P , ir(n) rep-
resents the implicit constraints involving n i.e the re-
lations n during P and the constraint for maintain-
ing the integrity of n as explicated before. For a re-
lation r and a Petri net PN , we define a method
elementary − transformation such as elementary −
transformation(r, PN) PN in applying the elementary
transformation associated with r as described in the
figures 3 and 4. We also define a method add− texture
such as, with n a texture, add(n, PN) modifies PN
in adding two places, one with the event Sn and an
other En. At last, for an interactive event e, we define
a function add − interactive − event such as add −
interactive − event(e, PN) turns the condition of the
transitions preceding the place of e in PN into waiting
the control message associated with e.

For P = (TEXT, IE, R) :

Create an empty Petri nets PN

add− texture(P, PN)

For each text ∈ TEXT add− texture(text, PN)

For each text ∈ TEXT

For each r ∈ ir(text)
elementary− transformation(r, PN)

For each r ∈ Rno−merge

elementary − transformation(r, PN)

For each r ∈ Rmerge

elementary − transformation(r, PN)

For each e ∈ IE
add− interactive− event(e, PN)

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

162



The figure 5 gives an example of the application of
this algorithm on an interactive score. In this example,
the interactive event T6 is controlled by the message X .

The proof of this algorithm is not yet designed but
we have got several ideas on it. First we should specify
the class of the Petri nets which are produced by the
algorithm. Indeed, the ensemble of Petri nets representing
an interactive score shows common characteristics that we
should clearly formalize. Then we assume that the proof
consists in exhibiting a bijection from the ensemble of
constraints systems involving the events (and not the en-
semble of scores) to our particular class of Petri nets. This
bijection must be found from the ensemble of constraints
systems involving the events and not the ensemble of
scores because a Petri net translates constraints between
the events and different scores can lead to the same
constraints between events and then the same Petri net.
The simplest example is a piece with 3 textures A, B,
C and the relations A meets B and C starts B. The
constraints system that stems from this piece is :
• date(EA) = date(SB)

• date(SB) = date(SC)

But the score with the same textures A, B, C and the
relations A meets C and C starts B gives the same
constraints system. So this proof that will be our next
work will involve the constraint systems between the
events.

V. THE GLOBAL CONSTRAINTS

The set of Allen relations we use, allows us to design
local constraints between the events of scores, but it
is impossible to use it in order to design some global
constraints over whole parts of the scores. We were given
notice that this possibility could relevantly increase our
model of interactive scores. We can imagine several types
of global constraints. Since we don’t interest in the sound
parameters of the textures here, the first we imagine
is a limitation on the number of simultaneously played
textures. But when the parameters of the textures are
considered a lot of constraints can be imaged such as
harmonic relations between the played textures for exam-
ple. The use of the global constraints is closely bound
to the interactive events because during the composition
the system maintains the global constraints in allowing
or not the composer to add some textures or change the
position of existing textures. Thus, after the compositional
phase, the score is such that every global constraints is
satisfied, but during the performance the launch of the
interactive events when the musician decides can locally
modify the organization of the score and then break some
global constraints.

To manage this growth of our model, we use a system
derived from the NTCC language. A full description of
the NTCC formalism can be found in [8]. Initially, we
thought using NTCC as an alternative to Petri nets for the
real-time system but this idea has not yet been explored.
We use a store of constraints such as in the NTCC
formalism but we don’t update it at each clock step.

overlaps

T

meets

T

T

T

T
T2Δ

Δ

Δ

Δ
Δ

Δ

Δ
Δ

Δ
Δ

Δ

Δ

Δ

1
1

3

3Τ

8

9

52Τ

3

6
4Τ

5

10

11

5Τ

4

2

4

Δ7Δ6

(a) The Interactive Score

ST

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

1

2

3

4

5

ST

ST

ST

ST
E

E

E

E

E

9

8

10

11

2

1

3

4

5Τ

4Τ

3Τ

2Τ
2T

3T

4T

5T

1T

(b) The associated Petri Net after the first step of
the algorithm

ST

ST

ST3

ST

ΔΤ

ΔΤ

2

5

Δ

Δ Δ

1

2

5

Δ Δ5

2

4 11

ΔST

4

Δ

Δ

8

6
7

Δ
9

3

E

E

E
5T

4
ET

1T

2T

E
3T

(c) After the transformation of overlaps relation

Δ
Δ Δ

5 5

Δ
Δ ST

,E
3

ST

Δ

E

Δ E

ETST

S
S Δ

Δ Δ E
4T

1T

4

3

2 2
1Τ

2T 3T

1T

11

5Τ

4T

7 8
65

(d) After the transformation of meets relation

ST

ST4

ST2

Δ
Δ Δ

5

Δ

X

4

5Τ

5
E

E

E

ΔΔ E
7 8 1T

11T

1
ST

Δ2

1Τ

,E
3

STT2 3T

4T
Δ Δ5 6

(e) After the transformation of T6

Fig. 5. An example of the transformation of an interactive score into
a Petri net

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

163



Δ 2

T4

T3 Δ 4Meets

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

T
Finishes

T1

1

2

Δ

Δ 3
CO

(a) An interactive score with global constraints

Store of Global Constraints

X

Δ

Δ
Δ

Δ

Δ
Δ

Δ

1

2

3

4

S

S T

S T 3

2

T

T

T

1

2

3

Ε T3

T2
Response

Ask

Ε

Ε Ε

S T1 1T

Add Constraint Remove Constraint

CO

CO

(b) The associated Petri Net

Fig. 6. An example of the use of global constraints

Thus, the composer is allowed to define some global
constraints through special temporal objects called con-
straints objects These constraints object are used to man-
age a set of global constraints during the performance. We
show the use of these objects in figure 6 ; in this example,
the temporal object CO express the will of the composer
that during CO the whole piece will be constrained
by a global constraint. These constraints objects can be
related to other TOs with the Allen relations in order to
synchronize the changes of the global constraints set with
the events of the score. For the performance, we add a
constraints store to the Petri net and the effect of the
events of the constraints objects (start and end) change
the store in adding or removing global constraints.

During the performance, when a transition is crossed,
the system ask the constraints store if creating a token in
the place which follows the transition and then launching
the events it contains will or will not break constraints of
the store. If no constraint is broken by the launch of the
events then they are directly launched. If a constraint is
broken by the launch of an event, several strategies can
be adopted :
• we can wait until the launch of the events of the

place does not break any constraint of the store
• we can not launch the events and then mute the

corresponding texture
• we can modify the parameters of the texture in such

a way that as the launch of the events does not break
the constraints in the store.

The figure 6 explicits the mechanism of global con-
straints. Suppose that the object CO holds the global
constraint on the number of simultaneously played tex-

tures and limit it to only 1. During the compositional
phase, after the composer introduces CO, the system
automatically prevents the composer from designing more
than one texture playing simultaneously, for example the
composer cannot organize the score such as T2 and T3

play in the same time. But during the performance, since
the interactive events T4 controls the trigger of ST3 ,
the musician can delay the start of T3. If this delay
is too important, the start of T2 which is static could
occur while T3 is still playing. In this case, the system
cannot launch ST2 because it would break the global
constraint. The strategy adopted by the system at this
moment has been chosen by the composer, indeed during
the composition the composer can define for each texture
the behavior of the system in case of global constraint
breaking. So the composer can choose if the texture can
be mute or modified. For the constraint on the number
of simultaneously played textures there is no parameters
to modify to prevent from constraint breaking, so in our
example if T2 is unmutable, the system will wait the
end of T3 before triggering T2, if T2 is mutable, the
system will simply mute it. In the case of a constraint
on the sound parameters, if the composer defines T2 as
modifiable, our idea is to run a constraint satisfaction
algorithm to compute new parameters for T2 which don’t
break the global constraint and then start T2 with these
new parameters but this solution has not yet been imple-
mented. With our example we can show how we hold the
modifications of the list of global constraints during the
performance, the events of the CO which are stored in
places of the Petri net as the events of the texture, change
the contain of the store.

The introduction of global constraints in the model
leads us to develop several verification algorithm for the
compositional phase in order to prevent the composer
from defining configurations of textures, Allen relations,
interactive events and global constraints that leads to
unplayable situations during the performance. Indeed,
some configurations could lead to freezing the evolution
of the piece during the performance. Such algorithms has
not yet been developed.

VI. ARCHITECTURE AND IMPLEMENTATION

The model and solutions presented in this paper has
been partially implemented in OpenMusic. Since we don’t
hold the sound parameters, for the moment, the textures
simply send OSC messages, one associated to the start
of the texture and another associated to the end of the
texture. These messages are sent to an external application
which holds them and starts or stops some processes
associated with the textures. The general architecture of
our implementation is shown in the figure 7.

We call musical context the ensemble composed by
the Petri net and the store of global constraints. The
interpretation of this musical environment consists in
running the Petri net as described before, holding the
controls input and sending the OSC messages associated
to the events.

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

164



Synthesis
process

Synthesis
process

Synthesis
process

Synthesis Parameters

A B C

Max Patch

TO’s Synthesis

controls
musical context

(Petri net)

OSC protocol
Interpretation

of the
Continuous

Fig. 7. The architecture of the system

VII. APPLICATIONS

Relatively to the previous section, we can see that one
of the direct applications of this system is to propose
an original way to deal with the time-line in Max/MSP.
Several composers and performers told us that the man-
agement of the time-line is one of the deficiencies of
Max and that they have to develop clever devices to
deal with time-line. Our system will allow composers to
schedule the sending of OSC messages to Max. Then,
the composers will design patches directly in Max and
schedule the trigger and release of them through an
interactive score.

The initial application is of course to provide com-
posers a tool that brings a formalism of interpretation
taken from music in electro-acoustic music. In extension,
this tool will allow composers to define static scores
and design different ways to interpret them. Indeed, a
composer could create several configurations of interac-
tive events for the same static score and then propose
different ways to perform his piece of music. For example,
composers could define a version for multiple performers
and another for only one performer in decreasing the
number of interactive events. We can also imagine that
performers could change the number of interactive events
by themselves and then adapt an interactive score to
their skills or ability. Then a beginner, a virtuoso or a
handicapped performer could interpret the same score in
adapting the difficulty of execution.

One can also imagine pedagogical applications, for
example a performer could progressively increase the
number of interactive events during practicing to play a
piece. Then, we can see that a performer can begin to
practice the interpretation of a piece before technically
be able to play it.

A last, we can see that this system can provide an
accurate system of play-back since we can synchronize
temporal objects with the controls triggered by perform-
ers.

VIII. CONCLUSION AND FUTURE WORK

We presented in this paper how we developed a sys-
tem for composing interactive scores and playing them.
We used constraints propagation scheme for editing the
scores and a model based on Petri nets for managing
the performance phase in holding the control inputs and

sending the musical parameters. We also present how we
increased our model with global constraints. In addition,
we have implemented parts of this system in OpenMusic
with encouraging preliminary results.

The very next step of this work will consist in enlarging
our model of Petri nets for holding the supple intervals.
Then we will change the transformation algorithm for
creating the new type of Petri nets and design a complete
proof of this algorithm. Once this theoretical step will be
finished, we will extend our implementation and make
it fully usable for composers and performers in order to
receive feed-backs on the use of the model.

REFERENCES

[1] M. D.-C. A. ALLOMBERT, G. ASSAYAG AND C. RUEDA, Concur-
rent constraints models for interactive scores, in Pr. of Sound and
Music Computing 2006, GMEM, Marseille, France, May 2006.

[2] J. ALLEN, Maintaining knowledge about temporal intervals, Com-
munications of the ACM, 26 (1983), pp. 832–843.

[3] A. BEURIVÉ, Un logiciel de composition musicale combinant un
modèle spectral, des structures hiérarchiques et des contraintes,
in Journées d’Informatique Musicale, JIM 2000, 2000.

[4] M. DESAINTE-CATHERINE AND A. ALLOMBERT, Specification
of temporal relations between interactive events, in Pr. of Sound
and Music Computing 2004, IRCAM, Paris, France, October 2004.

[5] M. L.-C. A. GÉRARD ASSAYAG, CAMILO RUEDA AND
O. DELERUE, Computer assisted composition at ircam : From
patchwork to openmusic, Computer Music Journal, 23 (1999).

[6] G. HAUS AND A. SAMETTI, Scoresynth : a system for the
synthesis of music scores based on petri nets and a music algebra,
IEEE Journal, 24 (1991), pp. 56–60.

[7] T. MURATA, Petri nets: Properties, analysis and applications, in
Proceedings of the IEEE, vol. 77(4), April 1989, pp. 541–580.

[8] C. PALAMIDESSI AND F. VALENTIA, A temporal concurrent con-
straint programming calculus, in Proc. of the Seventh International
Conference on Principles and Practice of Constraint Programming,
CP2001, 2001.

[9] S. POPE, The development of an intelligent composer’s assis-
tant: Interactive graphics tools and knowledge representation for
composers., in Pr. of the 1986 International Computer Music
Conference, The Hague, October 1986.

[10] C. SCHULTE AND G. TACK, Views and iterators for generic con-
straint implementations, in Pr. of the Fifth International Colloqium
on Implementation of Constraint and Logic Programming Systems,
CICLOPS05, 2005.

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

165


